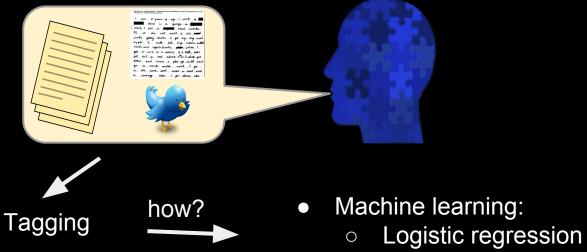
Logistic Regression and POS Tagging

CSE392 - Spring 2019 Special Topic in CS

Task



• Parts-of-Speech Tagging

Parts-of-Speech

Open Class:

Nouns, Verbs, Adjectives, Adverbs

Function words:

Determiners, conjunctions, pronouns, prepositions

Parts-of-Speech: The Penn Treebank Tagset

Table 2The Penn Treebank POS tagset.

1. CC	Coordinating conjunction	25. TO	ta
1. CC 2. CD	Coordinating conjunction Cardinal number	25. 10 26. UH	to Interjection
		20. UH 27. VB	
3. DT	Determiner		Verb, base form
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. presen
8. JJR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. JJS	Adjective, superlative	33. WDT	wh-determiner
10. LS	List item marker	34. WP	
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	wh-adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43.)	Right bracket character
20. RB	Adverb	44. <i>''</i>	Straight double quote
21. RBR	Adverb, comparative	45. <i>'</i>	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47. '	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote

Parts-of-Speech: Social Media Tagset

(Gimpel et al., 2010)

Ot	Other open-class words			
V	verb incl. copula, auxiliaries (V*, MD)	might gonna ought couldn't is eats	15.1	
Α	adjective (J*)	good fav lil	5.1	
R	adverb (R*, WRB)	2 (i.e., too)	4.6	
!	interjection (UH)	lol haha FTW yea right	2.6	
Ot	her closed-class words			
D	determiner (WDT, DT, WP\$, PRP\$)	the teh its it's	6.5	
Ρ	pre- or postposition, or subordinating conjunction (IN, TO)	while to for 2 (i.e., to) 4 (i.e., for)	8.7	
&	coordinating conjunction (CC)	and n & + BUT	1.7	
Т	verb particle (RP)	out off Up UP	0.6	
X	existential <i>there</i> , predeterminers (EX, PDT)	both	0.1	
Y	X + verbal	there's all's	0.0	

Tag	g Description	Examples	%
No	minal, Nominal + Verbal		
N	common noun (NN, NNS)	books someone	13.7
0	pronoun (personal/WH; not possessive; PRP, WP)	it you u meeee	6.8
S	nominal + possessive	books' someone's	0.1
î	proper noun (NNP, NNPS)	lebron usa iPad	6.4
Ζ	proper noun + possessive	America's	0.2
L	nominal + verbal	he's book'll iono (= I don't know)	1.6
Μ	proper noun + verbal	Mark'll	0.0

Tw	itter/online-specific		
#	hashtag (indicates topic/category for tweet)	#acl	1.0
@	at-mention (indicates another user as a recipient of a tweet)	@BarackObama	4.9
~	discourse marker, indications of continuation of a message across multiple tweets	RT and : in retweet construction RT @user : hello	3.4
U	URL or email address	http://bit.ly/xyz	1.6
Ε	emoticon	:-) :b (: <3 oO	1.0
Mi	scellaneous		
\$	numeral (CD)	2010 four 9:30	1.5
,	<pre>punctuation (#, \$, ' ', (,), , , ., :, ``)</pre>	III ?I?	11.6
G	other abbreviations, foreign words, possessive endings, symbols, garbage (FW, POS, SYM, LS)	ily (<i>I love you</i>) wby (<i>what about you</i>) 's -> awesomeI'm	1.1

POS Tagging: Applications

- Resolving ambiguity (speech: "lead")
- Shallow searching: find noun phrases
- Speed up parsing
- Use as feature (or in place of word)

For this course:

- An introduction to language-based classification (logistic regression)
- Understand what modern deep learning methods are dealing with implicitly.

Binary classification goal: Build a "model" that can estimate P(A=1|B=?)

i.e. given B, yield (or "predict") the probability that A=1

Binary classification goal: Build a "model" that can estimate P(A=1|B=?)

i.e. given B, yield (or "predict") the probability that A=1

In machine learning, tradition to use **Y** for the variable being predicted and **X** for the features use to make the prediction.

Binary classification goal: Build a "model" that can estimate P(Y=1|X=?)

i.e. given X, yield (or "predict") the probability that Y=1

In machine learning, tradition is to use Y for the variable being predicted and X for the features use to make the prediction.

Binary classification goal: Build a "model" that can estimate P(Y=1|X=?)

i.e. given X, yield (or "predict") the probability that Y=1

In machine learning, tradition is to use \mathbf{Y} for the variable being predicted and \mathbf{X} for the features use to make the prediction.

Example: Y: 1 if target is verb, 0 otherwise; X: 1 if "was" occurs before target; 0 otherwise

I was <u>reading</u> for NLP.

We were <u>fine</u>.

I am <u>good</u>.

The cat was <u>very</u> happy.

We enjoyed the <u>reading</u> material. I was <u>good</u>.

Binary classification goal: Build a "model" that can estimate P(Y=1|X=?)

i.e. given X, yield (or "predict") the probability that Y=1

In machine learning, tradition is to use \mathbf{Y} for the variable being predicted and \mathbf{X} for the features use to make the prediction.

Example: Y: 1 if target is verb, 0 otherwise; X: 1 if "was" occurs before target; 0 otherwise

I was <u>reading</u> for NLP.

We were <u>fine</u>.

I am <u>good</u>.

The cat was <u>very</u> happy.

We enjoyed the <u>reading</u> material. I was <u>good</u>.

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

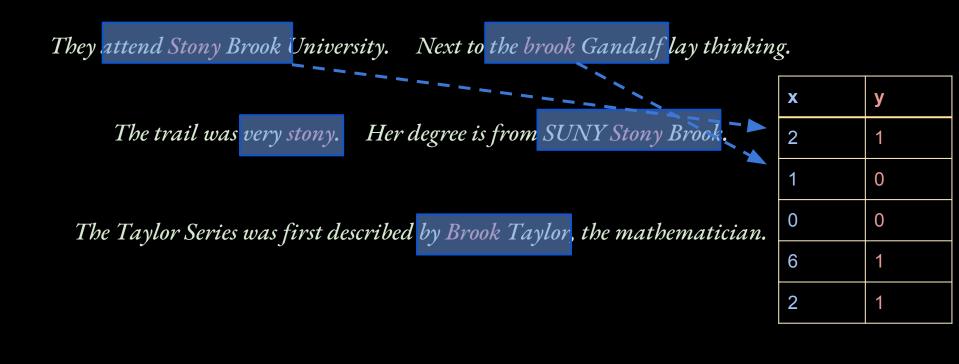
Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

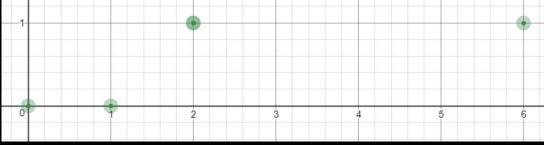
They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.





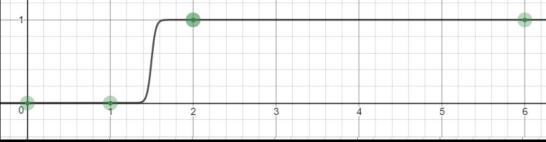
Example:Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x	У
2	1
1	0
0	0
6	1
2	1



Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x	У
2	1
1	0
0	0
6	1
2	1

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

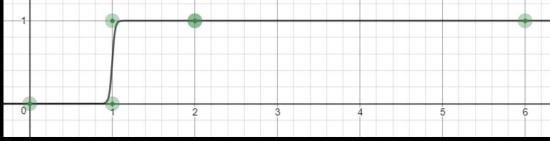
They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x	У
2	1
1	0
0	0
6	1
2	1
1	1



Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

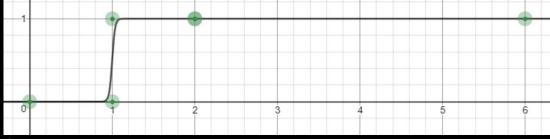
They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

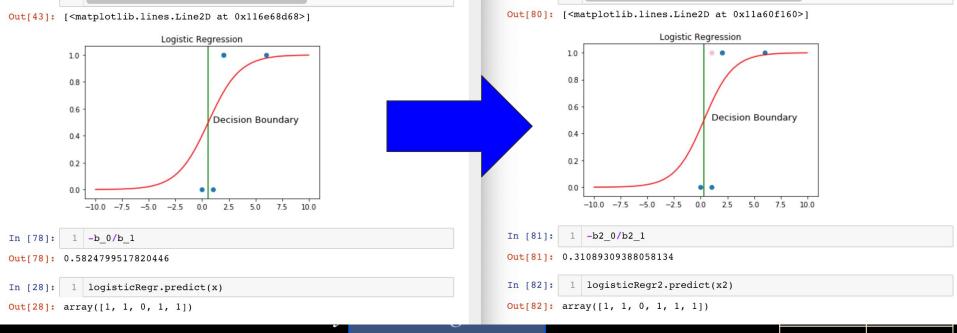
The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x	У
2	1
1	0
0	0
6	1
2	1
1	1

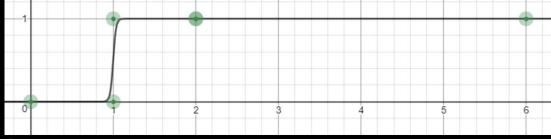


Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

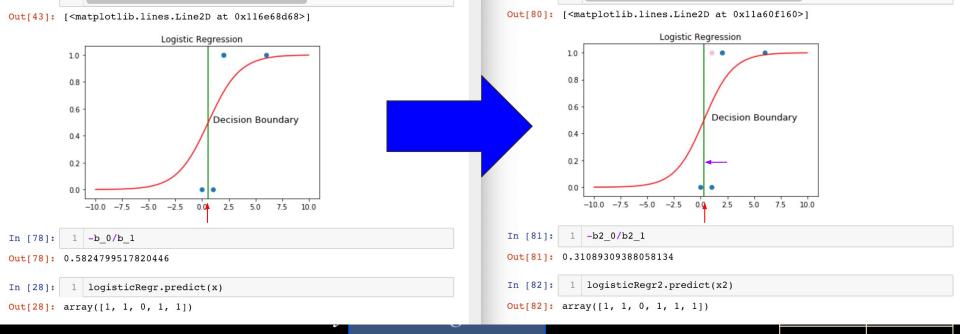


1

1

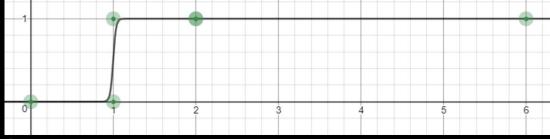


Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

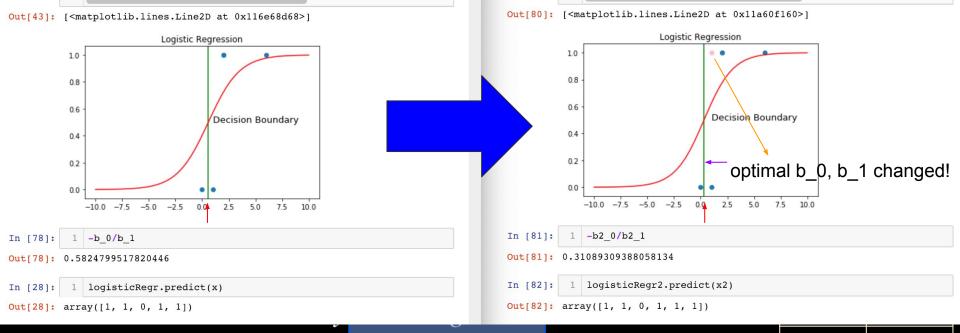


1

1



Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.



1

1

 $Y_i \in \{0, 1\}$; X is a **single value** and can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

Note that there are only three variables on the right: X_i , B_0 , B_1

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

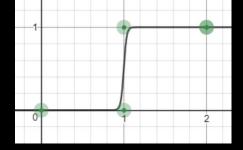
Note that there are only three variables on the right: X_i , B_0 , B_1

X is given. B_0 and B_1 must be learned.

 $Y_i \in \{0, 1\}$; X can be anything numeric.

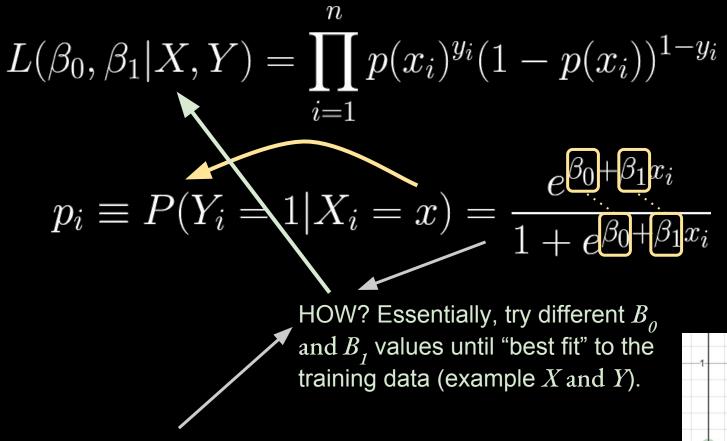
$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

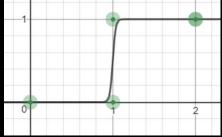
HOW? Essentially, try different B_o and B_1 values until "best fit" to the training data (example X and Y).



X is given. B_0 and B_1 must be learned.

"best fit" : whatever maximizes the likelihood function:





X is given. B_0 and B_1 must be learned.

"best fit" : whatever maximizes the likelihood function:

$$L(\beta_0, \beta_1 | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$
$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

To estimate β , one can use *reweighted least squares:*

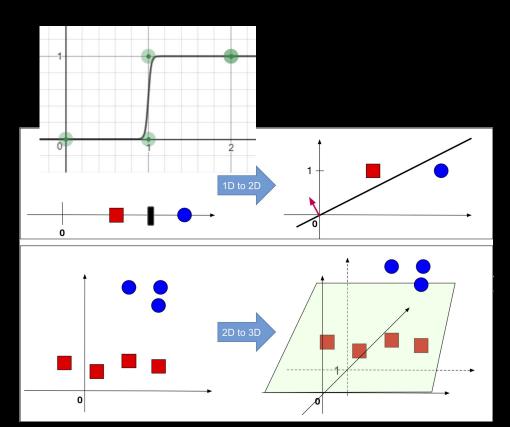
(Wasserman, 2005; Li, 2010)

set $\hat{\beta}_0 = ... = \hat{\beta}_m = 0$ (remember to include an intercept) 1. Calculate p_i and let W be a diagonal matrix where element $(i, i) = p_i(1 - p_i)$. 2. Set $z_i = logit(p_i) + \frac{Y_i - p_i}{p_i(1 - p_i)} = X\hat{\beta} + \frac{Y_i - p_i}{p_i(1 - p_i)}$ 3. Set $\hat{\beta} = (X^T W X)^{-1} X^T W z$ //weighted lin. reg. of Z on Y. 4. Repeat from 1 until $\hat{\beta}$ converges.

X can be multiple features

Often we want to make a classification based on multiple features:

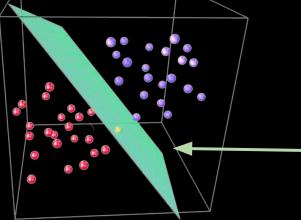
- Number of capital letters surrounding: integer
- Begins with capital letter: {0, 1}
- Preceded by "the"? {0, 1}



X can be multiple features

Often we want to make a classification based on multiple features:

- Number of capital letters surrounding: integer
- Begins with capital letter: {0, 1}
- Preceded by "the"? {0, 1}



We're learning a linear (i.e. flat) *separating hyperplane*, but fitting it to a *logit* outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr obabilities-logistic-regression-konstantinidis/) "best fit" : whatever maximizes the likelihood function:

$$L(\beta_0, \beta_1, \dots, \beta_k | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$
$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

To estimate β , one can use reweighted least squares:

(Wasserman, 2005; Li, 2010)

set $\hat{\beta}_0 = ... = \hat{\beta}_m = 0$ (remember to include an intercept) 1. Calculate p_i and let W be a diagonal matrix where element $(i, i) = p_i(1 - p_i)$. 2. Set $z_i = logit(p_i) + \frac{Y_i - p_i}{p_i(1 - p_i)} = X\hat{\beta} + \frac{Y_i - p_i}{p_i(1 - p_i)}$ 3. Set $\hat{\beta} = (X^T W X)^{-1} X^T W z$ //weighted lin. reg. of Z on Y. 4. Repeat from 1 until $\hat{\beta}$ converges. "best fit" : whatever maximizes the likelihood function:

$$L(\beta_0, \beta_1, \dots, \beta_k | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

This is just one way of finding the betas that maximize the likelihood function. In practice, we will use existing libraries that are fast and support additional useful steps like **regularization**..

To estimate β , one can use reweighted least squares:

(Wasserman, 2005; Li, 2010)

set $\hat{\beta}_0 = \dots = \hat{\beta}_m = 0$ (remember to include an intercept) 1. Calculate p_i and let W be a diagonal matrix where element $(i, i) = p_i(1 - p_i)$. 2. Set $z_i = logit(p_i) + \frac{Y_i - p_i}{p_i(1 - p_i)} = X\hat{\beta} + \frac{Y_i - p_i}{p_i(1 - p_i)}$ 3. Set $\hat{\beta} = (X^T W X)^{-1} X^T W z //$ weighted lin. reg. of Z on Y. 4. Repeat from 1 until $\hat{\beta}$ converges.

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}{1 + e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}$$

$$l logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_{j=1}^m \beta_j x_{ij}$$

We're learning a linear (i.e. flat) *separating hyperplane*, but fitting it to a *logit* outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr obabilities-logistic-regression-konstantinidis/)

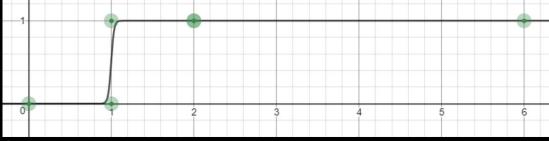
 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}{1 + e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}$$

$$l logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_{j=1}^m \beta_j x_{ij} = 0$$

We're still learning a linear -*separating hyperplane*, but fitting it to a *logit* outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr obabilities-logistic-regression-konstantinidis/)



Example: Y: 1 if target is a part of a proper noun, 0 otherwise;X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

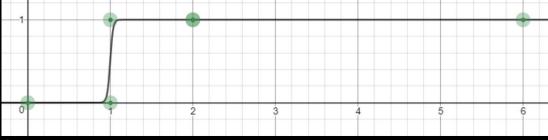
The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

X	У
2	1
1	0
0	0
6	1
2	1
1	1

Logistic Regression

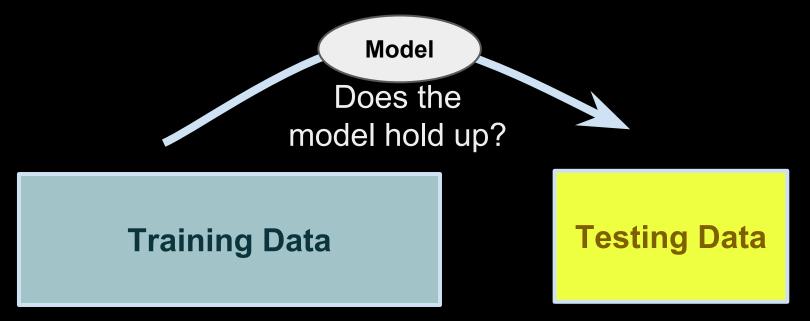


Example: Y: 1 if target is a part of a proper noun, 0 otherwise; X1: number of capital letters in target and surrounding words. Let's add a feature! X2: does the target word start with a capital letter?

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

x2 x1 У Her degree is from SUNY Stony Brook. 2 1 The trail was very stony. 0 1 0 $\mathbf{0}$ $\mathbf{0}$ 0 The Taylor Series was first described by Brook Taylor, the mathematician. 1 6 1 They attend Binghamton. 1 2 1 1

Machine Learning Goal: Generalize to new data

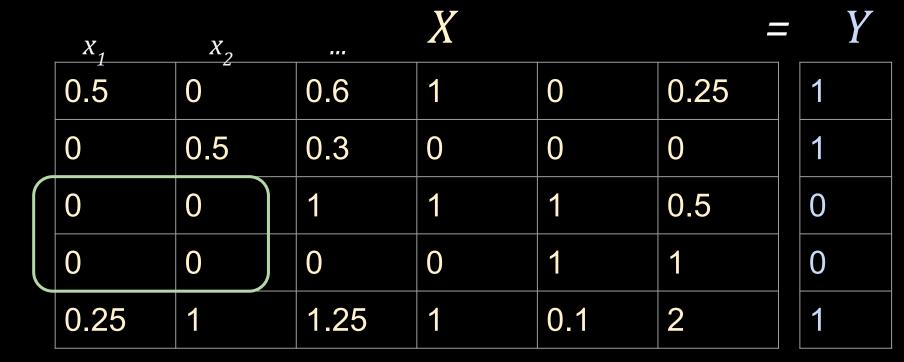


0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

=

0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

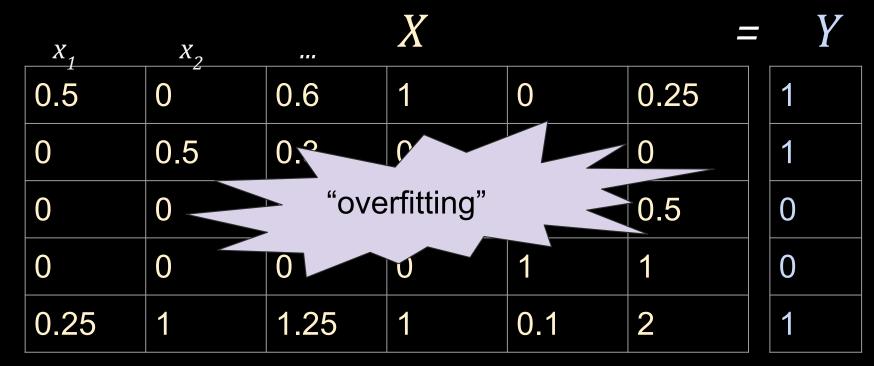
X



 $1.2 + \left| -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} \right| = logit(Y)$

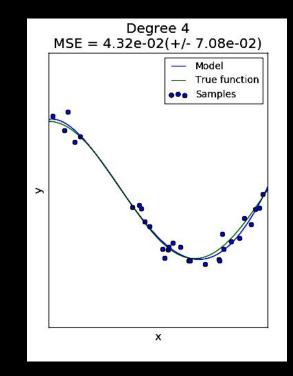
X ₁	X ₂		X			<u> </u>
0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$

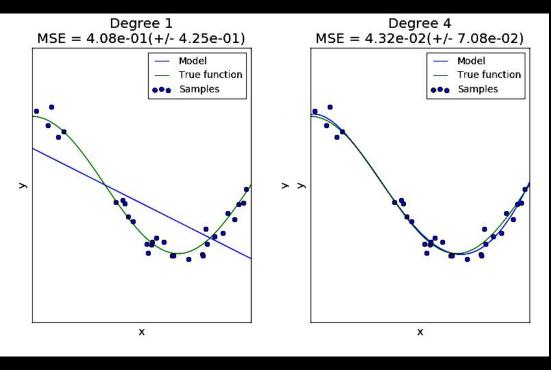


 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$

Overfitting (1-d non-linear example)



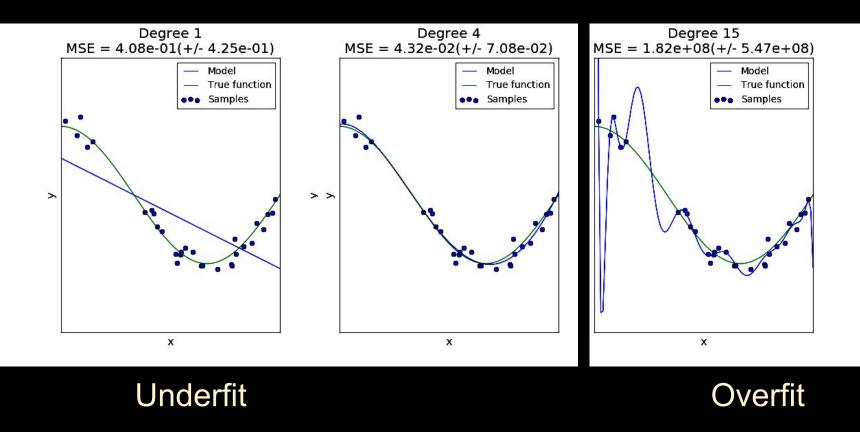
Overfitting (1-d non-linear example)



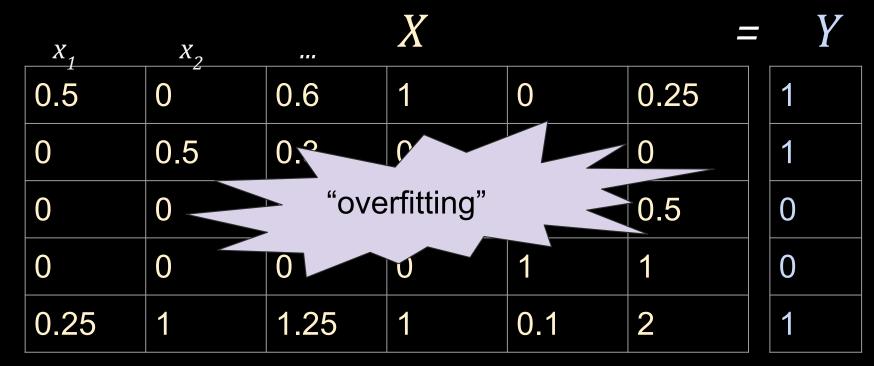
Underfit

(image credit: Scikit-learn; in practice data are rarely this clear)

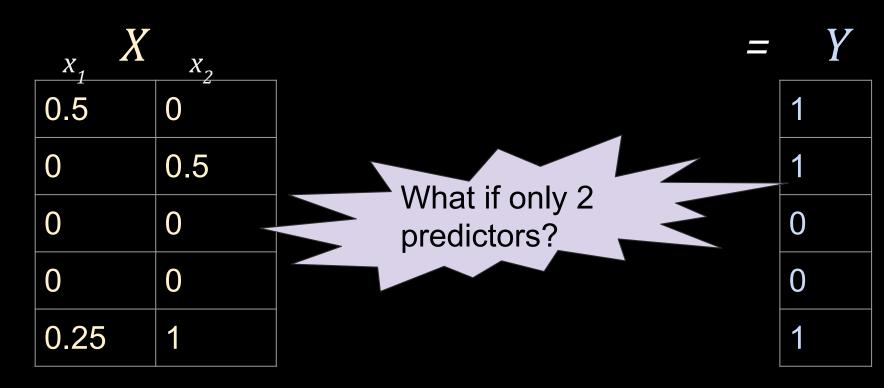
Overfitting (1-d non-linear example)

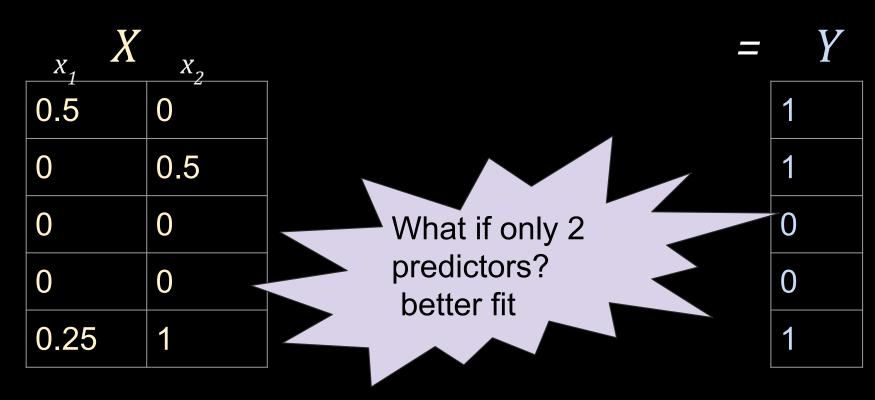


(image credit: Scikit-learn; in practice data are rarely this clear)



 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$





 $0 + 2^* x_1 + 2^* x_2$

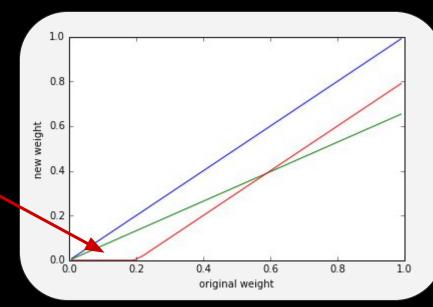
= logit(Y)

L1 Regularization - "The Lasso"

Zeros out features by adding values that keep from perfectly fitting the data.

L1 Regularization - "The Lasso"

Zeros out features by adding values that keep from perfectly fitting the data.

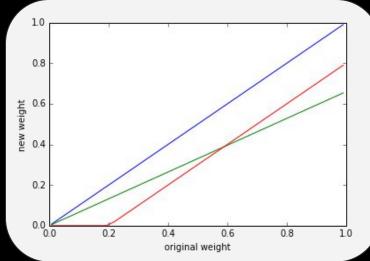


L1 Regularization - "The Lasso"

Zeros out features by adding values that keep from perfectly fitting the data.

$$L(\beta_0, \beta_1, \dots, \beta_k | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

set betas that maximize L

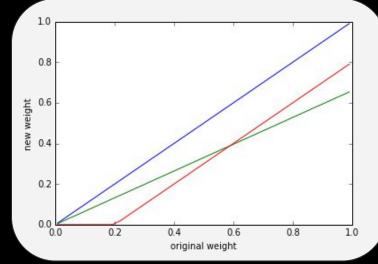


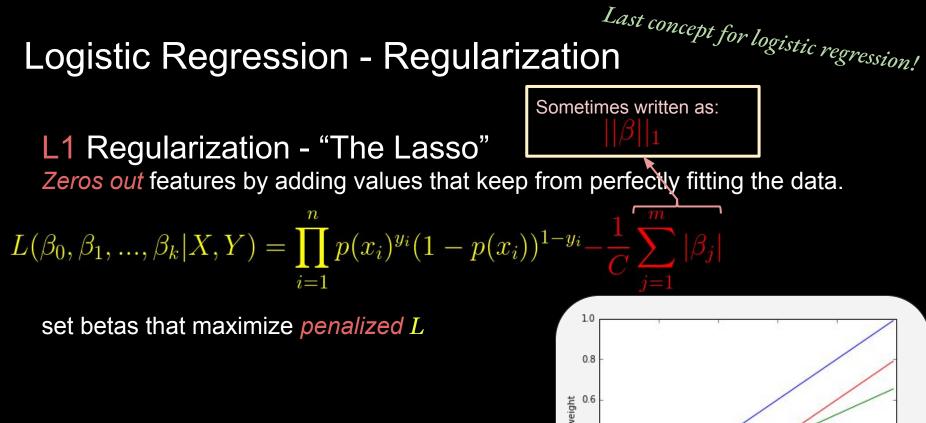
L1 Regularization - "The Lasso"

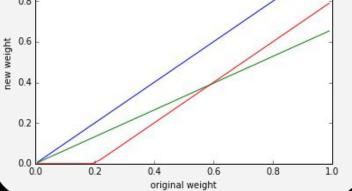
Zeros out features by adding values that keep from perfectly fitting the data.

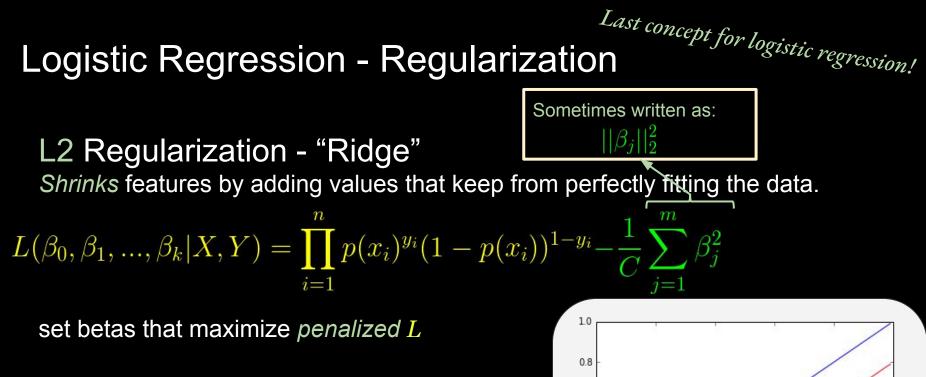
$$L(\beta_0, \beta_1, \dots, \beta_k | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i} - \frac{1}{C} \sum_{j=1}^m |\beta_j|$$

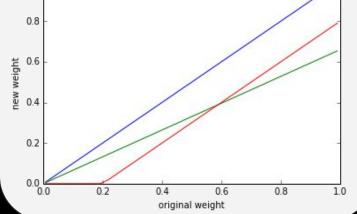
set betas that maximize *penalized L*



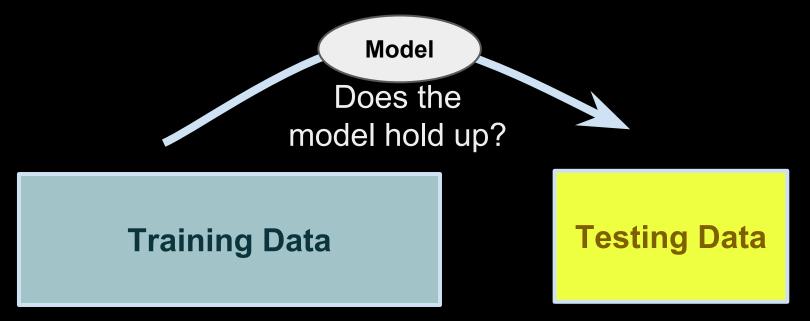




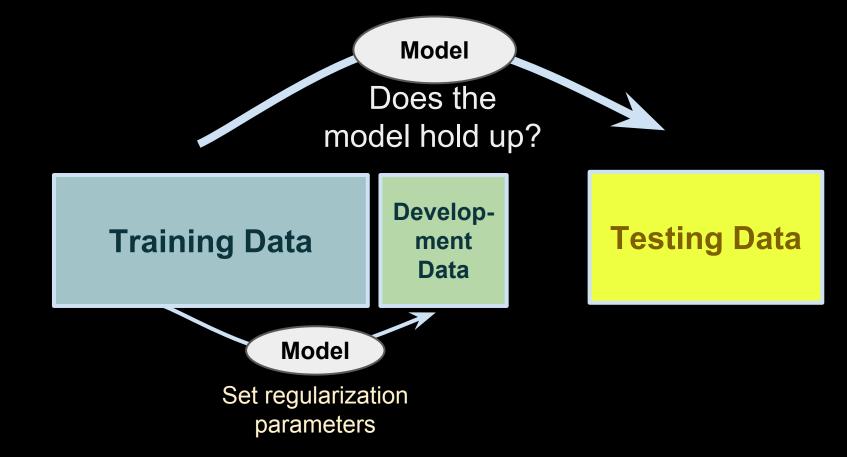




Machine Learning Goal: Generalize to new data



Machine Learning Goal: Generalize to new data



Logistic Regression - Review

- Classification: $P(Y \mid X)$
- Learn logistic curve based on example data
 - training + development + testing data
- Set betas based on maximizing the likelihood
 - \circ "shifts" and "twists" the logistic curve
- Multivariate features
- Separation represented by hyperplane
- Overfitting
- Regularization

Example

See notebook on website.

