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Task

● Parts-of-Speech Tagging
● Machine learning: 

○ Logistic regression
how?



Parts-of-Speech

Open Class: 

Nouns, Verbs, Adjectives, Adverbs

Function words:

Determiners, conjunctions, pronouns, prepositions



Parts-of-Speech: The Penn Treebank Tagset



Parts-of-Speech:
Social Media Tagset
(Gimpel et al., 2010)



POS Tagging: Applications

● Resolving ambiguity (speech: “lead”)

● Shallow searching: find noun phrases

● Speed up parsing

● Use as feature (or in place of word)

For this course: 

● An introduction to language-based classification (logistic regression)

● Understand what modern deep learning methods are dealing with implicitly. 
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optimal b_0, b_1 changed!
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HOW? Essentially, try different B0  
and B1 values until “best fit” to the 
training data (example X and Y). 

“best fit” : whatever maximizes the likelihood function: 

To estimate      , 
one can use 
reweighted least 
squares:

(Wasserman, 2005; Li, 2010)



X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters 
surrounding: integer
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separating hyperplane, but fitting 
it to a logit outcome. 
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HOW? Essentially, try different B0  
and B1 values until “best fit” to the 
training data (example X and Y). 

“best fit” : whatever maximizes the likelihood function: 

To estimate      , 
one can use 
reweighted least 
squares:

(Wasserman, 2005; Li, 2010)

This is just one way of finding the betas that maximize the likelihood 
function. In practice, we will use existing libraries that are fast and 
support additional useful steps like regularization.. 



Logistic Regression

Yi ∊ {0, 1}; X can be anything numeric. 

We’re learning a linear (i.e. flat) 
separating hyperplane, but fitting 
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Logistic Regression

Yi ∊ {0, 1}; X can be anything numeric. 

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

=0
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Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X1: number of capital letters in target and surrounding words. 

They attend Stony Brook University.     Next to the brook Gandalf lay thinking. 

The trail was very stony.     Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

Logistic Regression

x2 x1 y

1 2 1

0 1 0

0 0 0

1 6 1

1 2 1

1 1 1

X2: does the target word start with a capital letter?Let’s add a feature!



Machine Learning Goal: Generalize to new data

Training Data Testing Data

Model

Does the 
model hold up?
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2
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What if only 2 
predictors?
 better fit
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L2 Regularization - “Ridge”
Shrinks features by adding values that keep from perfectly fitting the data. 

set betas that maximize penalized L

Sometimes written as: 
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Machine Learning Goal: Generalize to new data

Training Data Testing Data

Model

Develop-
ment
Data

Model

Set regularization 
parameters

Does the 
model hold up?



Logistic Regression - Review

● Classification: P(Y | X)
● Learn logistic curve based on example data

○ training + development + testing data
● Set betas based on maximizing the likelihood 

○ “shifts” and “twists” the logistic curve
● Multivariate features
● Separation represented by hyperplane
● Overfitting
● Regularization



Example

See notebook on website. 

http://www3.cs.stonybrook.edu/~has/CSE392/Slides/LogisticRegressionExample.html

